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Abstract. The mechanism of stochastic resonance is studied in the case of the Landau- 
Ginzburg equation stochastically and periodically perturbed, by taking advantage of recent 
developments on the stochastic partial differential equations. Analytical expressions are 
given for computing the exit times of the system and to estimate the range of the noise for 
which the stochastic resonance is possible. 

1. Introduction 

During the last few years there has been a growing interest in the theory and  applications 
of stochastic differential equations. Most of the known results concern systems of 
ordinary differential equations (ODE) stochastically perturbed. For these cases the 
theory by Ventsel and Freidlin (1970) can be applied. Recently an  important task has 
been achieved by extending this theory to partial differential equations ( PDE)  by Faris 
and Jona-Lasinio (1982, hereafter referred to as FJ). In FJ a rigorous generalisation 
of the Ventsel and Freidlin theory has been proved for the nonlinear Landau-Ginzburg 
equation: 

a , ~ = m ~ - ~ ’ + A a ’ , ~ + J & t l ( x ,  t )  (1) 

where X E [ O ,  L ]  and ~ ( x ,  r )  is a white noise &correlated both in x and 1. 

perturbation: 
In this paper we discuss the statistical properties of equation (1) subject to a periodic 

a , ~ = m ~ - ~ ’ + A a ’ , ~ + B ( x ) c o s w t + J & V ( x ,  t ) .  (2) 

In the case of stochastically perturbed ODE the effect of a periodic forcing can produce 
the phenomenon of stochastic resonance described theoretically by various authors 
(Benzi et al 1981, 1983, Nicolis 1982, Eckman and Thomas 1982) and experimentally 
by Fauve and  Heshot (1983). By stochastic resonance we mean the case of a dynamical 
system subject to both periodic and stochastic forcing which show a resonance (peak 
in the power spectrum) which is absent when either the forcing or the periodic 
perturbation is absent. Our aim is to investigate the mechanism of stochastic resonance 
for equation (2).  

The paper is organised as follows: in Q 2 we discuss the statistical properties of 
equation ( 1 )  using analytical estimates and the results obtained in FJ ;  in Q 3 we discuss 
the mechanism of stochastic resonance for equation (2 1 together with some numerical 
computations. 
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2. Analytical estimate 

It was shown by Ventsel amd Freidlin (1970) that a system of ODE stochastically 
perturbed is equivalent, in the limit of small variance of the noise, to a Markov chain 
whose state are the steady states and the periodic orbits of the deterministic equation. 
Similar conclusions hold for the nonlinear partial differential equation (1).  It is known 
that the deterministic part of equation (1 )  has no periodic solution, its steady states 
being the extrema of the functional: 

v [ d ( x ) ] =  1 d ~ [ f 4 ~ - t m d ’ + f A ( a , 4 ) * ] .  (3) 

Using equation (4), (1) can be written in the form: 

d , d  = -6V/6d+J&7)(X,  t ) .  (4) 

The minima and  maxima of V correspond respectively to stable and unstable steady 
state solutions of equation (4) for E = O .  Obviously the choice of the boundary 
conditions determine the x dependence of the steady states. In FJ Dirichlet’s boundary 
conditions have been used: d(0, t )  = @ (  L, t )  = 0. In  this paper we choose Neuman’s 
boundary conditions: d,q5(0, t )  = a,@(& t )  = 0. We remark that our results can be 
straightforwardly generalised to Dirichlet’s boundary conditions. We motivated our 
choice because of future application of equations like (2)  to climate dynamics. 

The solutions of the nonlinear differential equations: 

md - d3 + A d 2 d / d x 2  = 0, d&(O)/dx = dr$(L)/dx = 0 (5% b )  

are the extrema of V with Neuman’s boundary conditions. Equation ( 5 a )  has three 
trivial solutions, namely 

(6) do = 0, dT= m1 2 ,  4- = -”’I 

It is easy to show that do is an unstable steady state and @+ ~ are two stable steady 
states for the deterministic part of equation (4). Moreover 

v ( d + i =  v(d-)= - ~ m ~ / 4 =  v,. ( 7 )  

For sufficiently small value of the parameter R = A/mL’, a class of unstable steady 
states exists, called ‘instantons’ or ‘multi-instantons’ solutions. Figure 1 shows the 
one-instanton solution. We shall indicate by 4‘k ’  a k-instanton solution, i.e. a solution 
of equations ( 5 )  which crosses the axis d = 0 k times. It is possible to show that 

(8 )  
By the generalisation of the Ventsel and Freidlin’s theory obtained in FJ, we know that 
the statistical properties of equation (1 )  depend mostly on the average exit times T , ,  7- 

from the basins of attraction of the stable steady states d+ and 4-  respectively. Because 
of the symmetry in the problem 

( 9 )  

V ( d ” ’ ) <  V ( d ” ’ ) <  V ( 4 ” ’ ) .  . . . 

T, = 7 .  = T,. 
A direct consequence of the Ventsel and Freidlin’s theory is that: 

(10) 

where AV = min{ V(d,) - V,, V ( d “ ’ )  - V,, V ( 4 ’ ” )  - V,, . . .} and C is a constant 

_ -  , - C e x p ( 2 A V / ~ )  
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Figure 1. The one-instanton solution, as defined in the text, obtained by a numerical 
computation of equation (5),  with L = 1, m = 0.25 and A = 0.0125. 

independent of E .  For sufficiently large value of R V(4'")  < V(&o). Thus by virtue of 
(8) it follows that 

A V =  V(q6"')- V,. ( 1 1 )  

We have investigated numerically the validity of equation (10) using a discretised 
version of equation ( 1 ) .  We introduced a regular lattice of spacing Ax = L /  N, and 
indicate by Yz the scalar field & computed in iAx where i = 0, 1 ,  . . . , N. Taking into 
account the boundary conditions, the discretised version of equation (1) is equivalent 
to the set of stochastic differential equations 

d V o =  [mVo-Vi+  A(*' -q0)/Ax2] d t +  (€ /AX) '  

dVj =[m.\II, -V:+A(P,+, -29J+V,_l ) /Ax2]  d t + ( e / A ~ ) ~ ' '  d W, 
d WO 

j = 1 , .  . . , N- 1 

(12) 

d V N  = [ m V N  

Equations (12) can also be written as 

-VY) /hx2]  d t +  ( ~ / A x ) ' l '  d W,. 

d'€'\Ir,=(-aV,/dV\Ir,)(l/Ax) dt+(E/AX)"* d W,, (13) 

V, = [CJ* ; /4 -  m/21;,Yf+A/2Ax2Zj(*,+, -V,)2]Ax. (14) 

where 

In analogy with equation ( l ) ,  the quantities to be computed are the exit times T~,, 
from the stable steady states = *m"2, i = 0, 1 ,  . . . , N. Using the ray method 
(Ludwig 1975, Shuss 1980) we obtain 

T S N  = CN exp(2A V , / E )  

where 

AV, = V:) - Vs, 

AVsN = - ( N +  l)m2Ax/4 

V';) = [I;,9;')4/4- m/2 I ; , *~ lJ~+A/ (2Ax2)Z , ( *~~ ) '  -*;")*]Ax 

= d'"(jAx).  
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The quantity C,+ can be calculated explicitly using the eigenvalues of the matrix 
L ,  = 8' V , v / P P ,  a", computed at the stable and unstable steady states. We refer to 
appendix 1 for a detailed explanation of this method. We assume that: 

A V =  lim AV,. 
N-ic 

In table 1 the results are reported of a series of numerical computations to obtain Ch 
and AV,,, for increasing values of N. We see that the numerical results have only a 
few per cent of fluctuations around a given value which we assume to be the asymptotic 
limit for C and A V  By using equation (10) we can compute 7, as a function of E .  

Table 1. 

20 1.594 03 0.012 87 
30 1.575 21 0.012 87 
40 1.568 47 0.012 88 
50 1.591 16 0.012 88 
60 1.565 65 0.012 88 
70 1.572 04 0.012 88 
80 1.587 46 0.012 88 

We also performed a series of numerical tests for equation (10) using the discretised 
version (12) of equation (1) for various values of E and N = 20, 30, 40 and 50. We 
have employed the Heun numerical method (see Blum 1972) for stochastic differential 
equations. All the numerical results agree within a few per cent with the theoretical 
estimate given by equation (10). 

3. Stochastic resonance 

To discuss the effect of the periodic forcing in equation (2) we can follow straightfor- 
wardly the approach presented in Benzi er a1 (1981), hereafter referred to as BSV. Let 
us consider the two stochastic differential equations 

a , 4 = m 4 - 4 3 + A d t 4 + B ( x ) + J ~ 7 7 ( x ,  t )  (17) 
a,4 = m d  - 4'+Aa;d - B ( X ) + J E T ( X ,  t ) .  (18) 

We shall indicate by 4; and 4; the two stable steady solutions of equations (17) and 
(18) respectively. Equations (6) are modified into the two following equations: 

(19) m4'- 413 + A a t 4 ' +  B (  x )  = 0 ar4' = 0 for x = 0, L, 

m4"-  d"'+Aat4' ' -  B ( x )  = 0 a&'!= 0 for x = 0, L. (20) 
We assume B ( x )  << 1 uniformly in x and we look for the solutions of (19) and (20) in 
power series of B ( x ) :  

4 ' =  Z,B(x)"xk. (21) 
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The equations for xb and xi are: 

mxb - xb3 + AatxA = 0 (22) 

m x ; B ( x ) - 3 ~ b ~ ~ ~ B ( x ) + A a ~ ( ~ ; B ( x ) ) + B ( x )  = O  (23) 

a&; = 0 for x = 0, L, 

a&; = 0 for x = 0, L. 

Analogous expressions hold for x: and xl .  The solutions of (22) correspond to the 
steady state solutions of equation (1). In order to compute the effect of the periodic 
forcing we need to evaluate, in analogy with BSV, the average exit times T:, TI: from 
the basin of attraction of 4: and 4: respectively. For small value of B(x)  we can 
estimate T: and 7: up to the first order in B(x) .  To this purpose we can compute up  
to order B ( x )  the potential V‘ and V“ of the steady states xA+ B(x)x ;  and x:+ B(x)x:. 
By V’ and V” we define the quantities 

V ’ =  d ~ [ 4 ’ ~ / 4 - m 4 ‘ * / 2 + A ( d , 4 ’ ) ’ - B ( x ) 4 ’ ] ,  I 
I V” = dx[ 4”‘/4 - m4’I2/2 + A(a,4”)’+ B(x)+’]. 

After some calculations we obtain: 

V”[x: + B(x)x;] = V(,y:) + d x  B(x)x: (25) 1 
where V(xb) is the potential given in (4) and computed for 4 =xb. Because x;l =xb 
are the steady states of equation (1) we can easily use equations (24) and (25) to 
estimate T: and T:: 

T: = C exp 2[ V( 4“)) - V( 4+) - 1 dx B ( x ) 4 “ ’  -t 1 dx B(x)$+]/ E 

T:= C exp2[V(4“’)-  V ( 4 + ) + 1  d x B ( x ) 4 “ ’  d x B ( x ) 4 + ] / ~ .  -I 
Equations (26) and (27) can be used to discuss the statistical properties of equation 
(2). In this paper we discuss the case B(x)  = constant. Then because 5 d x  B ( X ) ~ “ ’  = 0 
it follows that 

T: = C exp 2[ V( 4‘”) - V( 4+) - BLm ”*I/ E (28) 
TI: = C exp 2[ ~ ( 4 ‘ ” )  - V( 4+) + B L ~ ” ~ ] /  E. (29) 

7: 3 7T/o and 7:<< 7T/w (30) 

Following BSV we know that if 

then the average exit time of equation (2) is of order r / w  with variance of order 7:. 

In this case the solution of equation (2) is nearly periodic with period equal to 27~/w. 
in 

the variance of the noise in order to obtain the mechanism of stochastic resonance 
Inequalities (30) can be used to compute the upper and lower limit (cup, 

2(AV+ LBm’’*)/ ln(n/Co),  eUp=2(AV-  LBm’”) / ln(r /Cw) .  
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We have investigated numerically the validity of the above results for the case L =  1, 
m = 0.25, w = O.O01x/3 and for different values of E. Numerical integration have been 
performed for N = 20, 30 and 40 and no relevant changes have been observed. In 
figure 2 we plot the quantity 4 ( x )  d x / L  against time for different values of E .  It is 
cl.early seen 

nearly equal 
; (E"p+ F l o w ) .  

that the signal is periodic with period equal to 2 x l w  for F around 
It is clearly seen that the solution of the signal is periodic with period 
to 2 H / U .  

Figure 2.  Plot of 5 & ( x )  d x /  L against time for & / A X  = 0.002, P / A X  = 0.07 and & / A Y  = 0.1 1. 
The parameter values of the numerical computation are L = 1, N = 20, m = 0.25, A = 0.0125, 
w = 0.001 71/3 and B = B. 
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Appendix 

In this appendix we compute explicitly the factor C,v defined in § 2. 
Let zI, i = 1 . . . N satisfy the set of stochastic differential equations: 

dz, = -(a U l d z , )  d t +  d W,. ('41) 

Let P =  (zi . . . z R )  a stable fixed point of the deterministic part of equation ( A l )  and 
R the basin of attraction of P. The exit time from R is defined as 

r ( y , )  = inflt: z,(  t )  E dR, z,(O) = y ,  E RI 

where dR is the boundary of 0. The average value ( ~ ( y ) )  of r ( y )  satisfies the differential 



Stochastic resonance in the LG equation 2245 

equation (Dynkin 1965 

with boundary conditions 

( 4 Y ) )  = 0 for y ~ a R  

The solution of the equation (A2) can be computed analytically using the ray method 
reviewed by Ludwig (1975) and  Shuss (1980). It turns out that ( ~ ( j ) )  is almost constant 
in R with a narrow boundary layer of thickness E near dR which matches (A3). Using 
the saddle point technique it is possible to estimate ( ~ ( y ) )  inside R .  The final result is 

(A4) ( T ( Y ) ) =  n-D-"' ( P )  exp(2h U /  E ) / E , ( ~  ~ / a y ) ' " ~ - '  '(5,) 
where 

h U  = inf ( U ( P 7 ) -  U ( P ) ) ;  
!=I n 

PT are points of dR for which U is minimum; 

D( P )  = det d U/a.v, ay,], 

y: outer normal versor to a 0  computed in P'" 

5,: local coordinate in d f l  orthogonal to y 

H-"2(ltI =deta'Ll/aL, 35, i , j = l  . . .  hl-1 

Expression (A4) can also be written in the following way 

( ~ ( j ) )  = n- exp(2h  U /  E I / {  [ \ r l r A  ~ l ]1 '2Xr , lYn/ [  /n,A :',I]' ') 

where A :  are the eigenvalues of the matrix: 

L,, = a' cr /a~ ,  a,; l , J = l . .  N, 
computed in P ;  A :', are the eigenvalues of L,, computed in PF and l y n  = max, (AY',') > 0. 
In the case of equations (12) n = 2 and 1;" = '2,"" and P T 2  are the instanton solutions 
+c$('). I t  follows that 

(A51 ( ~ ( j ) ) ?  ( ~ / 2  \y") [ l I IA~~/r IA~l] '  ' e x p ( 2 A V , / ~ ) .  
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